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Abstract- In this paper a method for Myoelectric signal 
(MES) segmentation and classification is proposed. 
The classical moving average technique augmented 
with Principal Components Analysis (PCA), and time-
frequency analysis were used for segmentation. 
Multiresolution Wavelet Analysis (MRWA) was 
adopted as an effective feature extraction technique 
while Artificial Neural Networks (ANN) was used for 
MES classification. Results of classifying four elbow 
and wrist movements gave 94.9% sensitivity and 
94.9% positive predictivity. 
Keywords  Myoelectric signal, classification, wavelet 
transform, neural networks. 
 

I. INTRODUCTION 
 

MES are signals recorded using surface electrodes that 
reflect the localized neuromuscular activity. They have 
been used in various aspects of medical and biomedical 
applications [1]. For example, they are used for the 
diagnosis of neuromuscular diseases such as 
polymyositics [2]. One of the uses of MES is for 
controlling prosthesis manipulators [3].  Each MES, 
generated by muscle in performing different tasks, has a 
unique pattern. This pattern contains information about 
the direction of movements and speed of action. To be 
able to control prosthesis successfully, accurate 
segmentation and classification of these patterns is 
essential [4]. Furthermore, fast response of the prosthesis 
is needed which limits the period over which these 
features can be extracted. Hudgin et al. (1993) segmented 
the MES signal and represented each by a set of simple 
time-domain features. A standard ANN was trained to 
classify four arm movements [4]. Other feature extraction 
methods based on frequency analysis were also used [5]. 
However, MES signals are nonstationary and have highly 
complex time-frequency characteristics. Consequently, 
these signals can not be analyzed using classical methods 
such as Fourier transform. Although the Short-time 
Fourier Transform can be used to satisfy the stationarity 
condition for such nonstationary signals, it suffers from 
the fact that the performance depends on choosing an 
appropriate length of the desired segment of the signal. To 
overcome such problem, Wavelet Transform (WT) was 
used as a feature extraction method and has been widely 
used in signal and image analysis including [6-8].  WT 
was also used for MES signal classification [6]. However, 
despite the fact that not all wavelet coefficients were used 

to create the features input set, still large number of 
wavelet coefficients was used.  That resulted in having an 
ANN classifier with a large number of free parameters. 
The control signal for a prosthesis device can be derived 
from a single or multiple MES channels. Using a single 
channel would result in a less complex input structure to 
the classifier. However, using multi-channel signals  
makes the positions of the electrodes on the human 
subject become less critical to the experiment and 
increase the classification accuracy [9].  
In this research, MES data from the arm biceps and 
triceps was collected for elbow and wrist movements.  
The classical Moving Average (MA) together with PCA 
and wavelets were utilized for movement segmentation. 
The striking features belonging to different signals classes 
can be obtained by transforming the data space into a 
reduced feature space that retains most of the intrinsic 
information content of the data. MRWA was used to 
derive distinct set of wavelets coefficients for each MES 
signal pattern. A reduced set of wavelets coefficients was 
then obtained to provide a way to reduce the number of 
free parameters of the neural network classifier.  
  

II. METHODOLOGY 
 

Myoelectric signals were collected from biceps and 
triceps branchii since these muscle groups are directly 
responsible for the elbow and wrist movements of interest 
[10]. Four differential myoelectric signal channels were 
recorded using surface electrodes. Two channels were 
used to record potentials from the biceps and two 
channels recorded the triceps activity. Since the types of 
contraction of interest are grouped into elbow and wrist 
movements, the human subject was asked to produce a 
number of continuous sets of movements which contained 
either alternating elbow flexion and extension or 
alternating wrist pronation and supination. Fig.1 shows an 
example of MES for a number of elbow flexion and 
extension movements. The MES analysis needed for 
prosthesis control is composed of segmentation and 
classification.  The segmentation process is accomplished 
through subjecting the MES signals to the following 
stages: squaring, moving average, PCA and wavelet 
transform. One channel of the biceps MES is squared not 
only to enhance the contrast between the background 
noise and transient MES activities but also between MES 
activities themselves.  Furthermore, the squared signal is 
conditioned for the next MA stage.  
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Fig.1: Biceps and triceps MES signals. 
 
The squared MES signal is then filtered using MA 
method with a window length of 150 samples (at 1kHz 
sampling rate), as shown in Fig.2. As it can be seen, the 
MA has a cyclic pattern which represents the arm flexion-
extension activity with the minimum of each cycle 
corresponds to the end of extension segment and the start 
of the next flexion segment.  
 
To detect the end of the flexion segment, PCA was 
applied to the four channel signals for each flexion-
extension cycle obtained earlier using the MA.  PCA 
consists of finding a linear combination of the original 
data sequences such that the obtained signals are 
orthogonal and their variance maximized [11]. This is 
followed by computing the WT of the absolute value for 
each eigenvector with 64 different levels of resolution. It 
was found that the peak value of the WT of the first 
eigenvector at the middle resolution level coincides with 
the end of the flexion segment as shown in Fig.3. The 
index of this peak value is used to locate the end of 
flexion and the beginning of extension segment. The 
above segmentation procedure was also successfully used 
to segment the wrist pronation and supination movements.  
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Fig.2: Biceps MES and its MA signals. 
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Fig.3: MES and the WT of the first eigenvector at the 
middle resolution. 

 
 
Following the segmentation stage, a set of two data 
segments of 1024 samples each (with zero padding) from 
two MES channels representing both the biceps and 
triceps  were stored in an array for further signal 
processing. Each set of segments represents flexion, 
extension, pronation or supination. MRWA is used to 
obtain a reduced set of features that retains most of the 
intrinsic information of the signal and reflects the energy 
concentration in low and high frequency components 
[12].  
The MRWA decomposition of a signal f(x) can be 
represented in terms of the superposition of wavelets of 
different dilations and translations:  
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 where j and k are the scale and time shifts respectively, 
c00 is the last smoothed coefficient to be produced after 
decomposition,  {d j,k :j,k∈Z} are the details coefficients 
of wavelets decomposition, φ(x) is the scaling function 
and ψ(x) is the  mother wavelet [12].  The WAVELAB 
software [13] was used to generate the MRWA.  Since the 
objective of this research was to classify arm movements, 
it is advantageous to perform signal classification using a 
reduced but representative set of coefficients. For each 
movement under consideration, the wavelet transform 
was obtained using all levels of resolution. For example, a 
1024 samples segment would produce 10 levels of 
resolution.  At each resolution, the mean of the absolute 
value of all coefficients was calculated which resulted in a 
vector containing 10 values. Therefore, if two channels 
are considered for classification, then a total of 20 feature 
values are used.  
Artificial Neural Networks (ANN) have been widely used 
for classification purposes due to their trainability and 
robustness [14].  The backpropogation training algorithm 
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is commonly used to iteratively minimize the following 
cost function with respect to the interconnection weights 
and neurons thresholds:  
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Where P is the number of training patterns and N is the 
number of output nodes.  dk and zk are the desired and 
actual responses for output node k, respectively.  
Arm movement classification was performed using 
multilayer feedforward networks with the backpropgation 
training algorithm.  70% of the data was used for training 
the network while the rest was used for testing. The 
Neurosolution software [15] was used for constructing, 
training and testing the neural network.  
 
  

III. RESULTS AND DISCUSSION 
 

In this research, MES signal classification using one or 
two channels was investigated. For a quantitative 
classifier performance evaluation, segment-by-segment 
matching between the actual and the corresponding output 
classification codes was performed. Results of matching 
are true positive (TP), false positive (FP) or false negative 
(FN). For a hand movement, X, TP occurs when the 
classifier code matches that of movement X. FP occurs 
when the classifier output is the code of movement X 
while the input is a different movement. FN occurs when 
the classifier output code is different from that of input 
movement X. 
Consequently, the following two parameters were 
computed; the sensitivity (Se%) and positive predictivity 
(+P%), which are defined as: 
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The sensitivity Se% represents the percentage of 
movements that were correctly detected while the positive 
predictivity +P% represents the percentage of movements 
detected that were correct movements.  
Table I shows the movement classification results that 
were obtained using single or two channels. The average 
values of Se%  = 89.7% and  +P% = 93.3% were obtained 
with a single channel while values of Se%  = 94.9% and  
+P% 94.9% were achieved with two MES channels. 
These results confirm previous findings that two channels 
are necessary for improved classification performance 
regardless of the features extraction method. 

TABLE I 
MES movement classification performance using a single 

channel or two channels  

Movement TP 
1 /2 Ch. 

FP 
1 /2 Ch. 

FN 
1 /2 Ch. 

Elbow flexion 21/21 0 /1 0/0  
Elbow  extension 18/20 0 /1 3 /1 
Wrist pronation  15/17 1 /1 3 /1 
Wrist supination 16/16 4/1  2/2 
Combined 70/74 5/4 8/4 

 
 
It was also found that lower and higher resolution levels 
were equally important to achieve adequate classification 
performance. This was true regardless of whether a single 
or two channels were considered. This reflects the fact 
that both low and high frequencies of the MES signals are 
equally important for classification. Hence, coefficients 
from all resolutions were used to create the observation 
features vector. Furthermore, using MRWA to extract 
MES features resulted in higher classification 
performance compared with using statistical and temporal 
features such as mean, zero crossing,..etc. [9] when both 
methods used neural networks as a classifier. 
 
 

IV. CONCLUSIONS 
 

Classification of elbow flexion-extension and wrist 
pronation-supination was investigated. Segmentation 
using a combination of MA, PCA and WT was used. 
MRWA was adopted as an effective feature extraction 
technique while ANN used for MES classification. The 
use of multiple channels was found to improve 
classification performance. Results of classifying the four 
movements gave 94.9% sensitivity and 94.9% positive 
predictivity. Future work concentrates on applying this 
method on more subjects and extending this work to 
prosthesis control. 
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